183 research outputs found

    OH far-infrared emission from low- and intermediate-mass protostars surveyed with Herschel-PACS

    Get PDF
    OH is a key species in the water chemistry of star-forming regions, because its presence is tightly related to the formation and destruction of water. This paper presents OH observations from 23 low- and intermediate-mass young stellar objects obtained with the PACS integral field spectrometer on-board Herschel in the context of the Water In Star-forming Regions with Herschel (WISH) key program. Most low-mass sources have compact OH emission (< 5000 AU scale), whereas the OH lines in most intermediate-mass sources are extended over the whole PACS detector field-of-view (> 20000 AU). The strength of the OH emission is correlated with various source properties such as the bolometric luminosity and the envelope mass, but also with the OI and H2O emission. Rotational diagrams for sources with many OH lines show that the level populations of OH can be approximated by a Boltzmann distribution with an excitation temperature at around 70 K. Radiative transfer models of spherically symmetric envelopes cannot reproduce the OH emission fluxes nor their broad line widths, strongly suggesting an outflow origin. Slab excitation models indicate that the observed excitation temperature can either be reached if the OH molecules are exposed to a strong far-infrared continuum radiation field or if the gas temperature and density are sufficiently high. Using realistic source parameters and radiation fields, it is shown for the case of Ser SMM1 that radiative pumping plays an important role in transitions arising from upper level energies higher than 300 K. The compact emission in the low-mass sources and the required presence of a strong radiation field and/or a high density to excite the OH molecules points towards an origin in shocks in the inner envelope close to the protostar.Comment: Accepted for publication in Astronomy and Astrophysics. Abstract abridge

    High prevalence of urinary schistosomiasis in a desert population: results from an exploratory study around the ounianga lakes in Chad

    Get PDF
    Background: Researching a water-borne disease in the middle of the Sahara desert might not seem the most relevant concern. However, nomadic Sahelian pastoralist's health concerns regarding their livestock and anecdotal reports about trematode infections of Fasciola spp and Schistosoma spp in desert-raised animals justified an exploratory study focusing on the lakes of Ounianga in Northern Chad. The aim was to test whether trematode parasites such as Schistosoma spp occur in human populations living around the Sahara desert lakes of Ounianga Kebir and Ounianga Saker in northern Chad. Methods: The study comprised of three components. First, a cross sectional survey based on a random sample drawn from the population to detect infections with S. haematobium and S. mansoni ; second, focus group discussions exploring disease priorities, access to health and health seeking behaviour; and third, searching water contact sites for intermediate host snails. Samples of trematode parasites and snails were confirmed on species level by molecular genetics methods. Results: Among 258 participants, the overall S. haematobium prevalence using urine filtration was 39.1% (95% CI 33.2% - 45.1%), with 51.5% of the infected suffering from heavy infection. The intermediate host snail of S. haematobium ( Bulinus truncatus ) occurred at water sites near both study villages, revealing the potential for local transmission. Although a positive S. mansoni POC-CCA test result was obtained from 15.2% (10.6%-19.7%) of the samples no intermediate host snails of S. mansoni were found, and the relevance of S. mansoni remains uncertain. Qualitative findings underline the importance of morbidity caused by urinary schistosomiasis, and the lack of access to diagnostics and treatment as a major health concern. Conclusion: This research revealed a high prevalence of urinary schistosomiasis in the population living around the lakes of Ounianga in the Sahara, a UNESCO world heritage site in Chad. Despite the high public health importance of the associated morbidity expressed by the population there is no access to diagnostics and treatment. Further research is needed to develop and test a context adapted intervention

    Observational evidence for dissociative shocks in the inner 100 AU of low-mass protostars using <i>Herschel</i>-HIFI

    Get PDF
    Aims. Herschel-HIFI spectra of H2O towards low-mass protostars show a distinct velocity component not seen in observations from the ground of CO or other species. The aim is to characterise this component in terms of excitation conditions and physical origin. Methods. A velocity component with an offset of ~10 km s-1 detected in spectra of the H2O 110–101 557 GHz transition towards six low-mass protostars in the “Water in star-forming regions with Herschel” (WISH) programme is also seen in higher-excited H2O lines. The emission from this component is quantified and local excitation conditions are inferred using 1D slab models. Data are compared to observations of hydrides (high-J CO, OH+, CH+, C+, OH) where the same component is uniquely detected. Results. The velocity component is detected in all six targeted H2O transitions (Eup ~ 50–250 K), as well as in CO 16–15 towards one source, Ser SMM1. Inferred excitation conditions imply that the emission arises in dense (n ~ 5 × 106–108 cm-3) and hot (T ~ 750 K) gas. The H2O and CO column densities are ≳1016 and 1018 cm-2, respectively, implying a low H2O abundance of ~10-2 with respect to CO. The high column densities of ions such as OH+ and CH+ (both ≳1013 cm-2) indicate an origin close to the protostar where the UV field is strong enough that these species are abundant. The estimated radius of the emitting region is 100 AU. This component likely arises in dissociative shocks close to the protostar, an interpretation corroborated by a comparison with models of such shocks. Furthermore, one of the sources, IRAS 4A, shows temporal variability in the offset component over a period of two years which is expected from shocks in dense media. High-J CO gas detected with Herschel-PACS with Trot ~ 700 K is identified as arising in the same component and traces the part of the shock where H2 reforms. Thus, H2O reveals new dynamical components, even on small spatial scales in low-mass protostars

    Co-infection of the four major Plasmodium species: effects on densities and gametocyte carriage

    Get PDF
    BACKGROUND: Co-infection of the four major species of human malaria parasite Plasmodium falciparum (Pf), P. vivax (Pv), P. malariae (Pm), and P. ovale sp. (Po) is regularly observed, but there is limited understanding of between-species interactions. In particular, little is known about the effects of multiple Plasmodium species co-infections on gametocyte production. METHODS: We developed molecular assays for detecting asexual and gametocyte stages of Pf, Pv, Pm, and Po. This is the first description of molecular diagnostics for Pm and Po gametocytes. These assays were implemented in a unique epidemiological setting in Papua New Guinea with sympatric transmission of all four Plasmodium species permitting a comprehensive investigation of species interactions. FINDINGS: The observed frequency of Pf-Pv co-infection for asexual parasites (14.7%) was higher than expected from individual prevalence rates (23.8%Pf x 47.4%Pv = 11.3%). The observed frequency of co-infection with Pf and Pv gametocytes (4.6%) was higher than expected from individual prevalence rates (13.1%Pf x 28.2%Pv = 3.7%). The excess risk of co-infection was 1.38 (95% confidence interval (CI): 1.09, 1.67) for all parasites and 1.37 (95% CI: 0.95, 1.79) for gametocytes. This excess co-infection risk was partially attributable to malaria infections clustering in some villages. Pf-Pv-Pm triple infections were four times more frequent than expected by chance alone, which could not be fully explained by infections clustering in highly exposed individuals. The effect of co-infection on parasite density was analyzed by systematic comparison of all pairwise interactions. This revealed a significant 6.57-fold increase of Pm density when co-infected with Pf. Pm gametocytemia also increased with Pf co-infection. CONCLUSIONS: Heterogeneity in exposure to mosquitoes is a key epidemiological driver of Plasmodium co-infection. Among the four co-circulating parasites, Pm benefitted most from co-infection with other species. Beyond this, no general prevailing pattern of suppression or facilitation was identified in pairwise analysis of gametocytemia and parasitemia of the four species. TRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov, Trial ID: NCT02143934

    Multi-instrument analysis of 67P/Churyumov-Gerasimenko coma particles: COPS-GIADA data fusion

    Get PDF
    The European Space Agency's Rosetta mission to comet 67P/Churyumov-Gerasimenko has offered scientists the opportunity to study a comet in unprecedented detail. Four instruments of the Rosetta orbiter, namely, the Micro-Imaging Dust Analysis System (MIDAS), the Grain Impact Analyzer and Dust Accumulator (GIADA), the COmetary Secondary Ion Mass Analyser (COSIMA), and the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) have provided information on cometary dust particles. Cross-instrument comparisons are crucial to characterize cometary dust particles beyond the capabilities of individual sensors, as they are sensitive to different dust components. We present the first comparison between detections of the ROSINA COmet Pressure Sensor (COPS) and GIADA. These two instruments are complementary as the former is sensitive solely to volatiles of icy particles, while the latter measured the dust particle as a whole, including refractories and condensed (semi)volatiles. Our goal is to correlate the particles detected by COPS and GIADA and to assess whether they belong to a common group. We statistically analyzed the in situ data of COPS and GIADA by calculating Pearson correlation coefficients. Among the several types of particles detected by GIADA, we find that COPS particles are significantly correlated solely with GIADA fluffy agglomerates (Pearson correlation coefficient of 0.55 and p-value of 4.6⋅10−34.6\cdot 10^{-3}). This suggests that fluffy particles are composed of both refractories and volatiles. COPS volatile volumes, which may be represented by equivalent spheres with a diameter in the range between 0.06 ÎŒ\mum and 0.8 ÎŒ\mum, are similar to the sizes of the fractal particle's subunits identified by MIDAS (i.e., 0.05-0.18 ÎŒ\mum).Comment: 6 pages, 3 figures, accepted for publication in A&

    High-J CO emission in the Cepheus E protostellar outflow observed with SOFIA/GREAT

    Full text link
    We present and analyze two spectrally resolved high-J CO lines towards the molecular outflow Cep E, driven by an intermediate-mass class 0 protostar. Using the GREAT receiver on board SOFIA, we observed the CO (12--11) and (13--12) transitions (E_u ~ 430 and 500 K, respectively) towards one position in the blue lobe of this outflow, that had been known to display high-velocity molecular emission. We detect the outflow emission in both transitions, up to extremely high velocities (~ 100 km/s with respect to the systemic velocity). We divide the line profiles into three velocity ranges that each have interesting spectral features: standard, intermediate, and extremely high-velocity. One distinct bullet is detected in each of the last two. A large velocity gradient analysis for these three velocity ranges provides constraints on the kinetic temperature and volume density of the emitting gas, >~ 100 K and > ~ 10^4 cm^-3, respectively. These results are in agreement with previous ISO observations and are comparable with results obtained by Herschel for similar objects. We conclude that high-J CO lines are a good tracer of molecular bullets in protostellar outflows. Our analysis suggests that different physical conditions are at work in the intermediate velocity range compared with the standard and extremely high-velocity gas at the observed position.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue

    Plasmodium vivax and Plasmodium falciparum infection dynamics: re-infections, recrudescences and relapses

    Get PDF
    Background: In malaria endemic populations, complex patterns of Plasmodium vivax and Plasmodium falciparum blood-stage infection dynamics may be observed. Genotyping samples from longitudinal cohort studies for merozoite surface protein (msp) variants increases the information available in the data, allowing multiple infecting parasite clones in a single individual to be identified. msp genotyped samples from two longitudinal cohorts in Papua New Guinea (PNG) and Thailand were analysed using a statistical model where the times of acquisition and clearance of each clone in every individual were estimated using a process of data augmentation. Results: For the populations analysed, the duration of blood-stage P. falciparum infection was estimated as 36 (95% Credible Interval (CrI): 29, 44) days in PNG, and 135 (95% CrI 94, 191) days in Thailand. Experiments on simulated data indicated that it was not possible to accurately estimate the duration of blood-stage P. vivax infections due to the lack of identifiability between a single blood-stage infection and multiple, sequential blood-stage infections caused by relapses. Despite this limitation, the method and data point towards short duration of blood-stage P. vivax infection with a lower bound of 24 days in PNG, and 29 days in Thailand. On an individual level, P. vivax recurrences cannot be definitively classified into re-infections, recrudescences or relapses, but a probabilistic relapse phenotype can be assigned to each P. vivax sample, allowing investigation of the association between epidemiological covariates and the incidence of relapses. Conclusion: The statistical model developed here provides a useful new tool for in-depth analysis of malaria data from longitudinal cohort studies, and future application to data sets with multi-locus genotyping will allow more detailed investigation of infection dynamics

    SOFIA observations of far-infrared hydroxyl emission toward classical ultracompact HII/OH maser regions

    Full text link
    The hydroxyl radical (OH) is found in various environments within the interstellar medium (ISM) of the Milky Way and external galaxies, mostly either in diffuse interstellar clouds or in the warm, dense environments of newly formed low-mass and high-mass stars, i.e, in the dense shells of compact and ultracompact HII regions (UCHIIRs). Until today, most studies of interstellar OH involved the molecule's radio wavelength hyperfine structure (hfs) transitions. These lines are generally not in LTE and either masing or over-cooling complicates their interpretation. In the past, observations of transitions between different rotational levels of OH, which are at far-infrared wavelengths, have suffered from limited spectral and angular resolution. Since these lines have critical densities many orders of magnitude higher than the radio wavelength ground state hfs lines and are emitted from levels with more than 100 K above the ground state, when observed in emission, they probe very dense and warm material. We probe the warm and dense molecular material surrounding the UCHIIR/OH maser sources W3(OH), G10.62-0.39 and NGC 7538 IRS1 by studying the 2Π1/2,J=3/2−1/2^2\Pi_{{1/2}}, J = {3/2} - {1/2} rotational transition of OH in emission and, toward the last source also the molecule's 2Π3/2,J=5/2−3/2^2\Pi_{3/2}, J = 5/2 - 3/2 ground-state transition in absorption. We used the Stratospheric Observatory for Infrared Astronomy (SOFIA) to observe these OH lines, which are near 1.84 THz (163ÎŒ163 \mum) and 2.51 THz (119.3ÎŒ119.3 \mum). We clearly detect the OH lines, some of which are blended with each other. Employing non-LTE radiative transfer calculations we predict line intensities using models of a low OH abundance envelope versus a compact, high-abundance source corresponding to the origin of the radio OH lines.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue

    OH emission from warm and dense gas in the Orion Bar PDR

    Full text link
    As part of a far-infrared (FIR) spectral scan with Herschel/PACS, we present the first detection of the hydroxyl radical (OH) towards the Orion Bar photodissociation region (PDR). Five OH rotational Lambda-doublets involving energy levels out to E_u/k~511 K have been detected (at ~65, ~79, ~84, ~119 and ~163um). The total intensity of the OH lines is I(OH)~5x10^-4 erg s^-1 cm^-2 sr^-1. The observed emission of rotationally excited OH lines is extended and correlates well with the high-J CO and CH^+ J=3-2 line emission (but apparently not with water vapour), pointing towards a common origin. Nonlocal, non-LTE radiative transfer models including excitation by the ambient FIR radiation field suggest that OH arises in a small filling factor component of warm (Tk~160-220 K) and dense (n_H~10^{6-7} cm^-3) gas with source-averaged OH column densities of ~10^15 cm^-2. High density and temperature photochemical models predict such enhanced OH columns at low depths (A_V<1) and small spatial scales (~10^15 cm), where OH formation is driven by gas-phase endothermic reactions of atomic oxygen with molecular hydrogen. We interpret the extended OH emission as coming from unresolved structures exposed to far-ultraviolet (FUV) radiation near the Bar edge (photoevaporating clumps or filaments) and not from the lower density "interclump" medium. Photodissociation leads to OH/H2O abundance ratios (>1) much higher than those expected in equally warm regions without enhanced FUV radiation fields.Comment: Accepted for publication in A&A Letters. Figure B.2. is bitmapped to lower resolutio
    • 

    corecore